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SUMMARY

Flame sheet problems are on the natural route to the numerical solution of multidimensional

flames, which, in turn, are important in many engineering applications. In order to model the flame

structure more accurately, we use the vorticity-velocity formulation of the fluid flow equations

instead of the streamfunction-vorticity approach. The numerical solution of the resulting nonlinear

coupled elliptic partial differential equations involves a pseudo transient process and a steady state

Newton iteration. Rather than working with dimensionless variables, we introduce scale factors

that can yield significant savings in the execution time. In this context, we also investigate the

applicability and performance of several multigrid methods, focusing on nonlinear damped Newton

multigrid, using either one way or correction schemes.

1. INTRODUCTION

Recent advances in the development of computational algorithms and supercomputers have

provided new extremely powerful tools with which to investigate chemically reacting systems that

were computationally infeasible only a few years ago (see [1], [2], [3], and [4]). The difficulties

associated with solving high heat release combustion problems stem from the large number of

dependent unknowns, the nonlinear character of the governing partial differential equations and the

different length scales present in the problem. Typical combustion problems may involve, in

addition to the temperature and the fluid dynamics variables, dozens of species defined at each grid

point and require the resolution of curved fronts whose thickness is on the order of thousandths of

the domain diameter, across which critical fields vary by orders of magfiitude. As a result of the

fluid dynamics-thermochemistry interaction and its effect on the flame structure, the governing
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equations are strongly coupled together and are also characterized by the presence of stiff source

terms and nonlinearities. Hence, Newton methods with sophisticated control strategies, including

damping and adaptive continuation techniques, are needed. However, in spite of these difficulties,

the numerical modeling of multidimensional laminar (or turbulent) flames has been recently

motivated by the growing demand for high fuel efficiency combined with low pollutant emission.

While three dimensional turbulent flame simulations still remain infeasible on current

supercomputers, axisymmetric laminar diffusion flames constitute a problem of practical

importance since they are the flame type of several combustion devices. Hence, new robust

numerical models of such a system will provide an efficient tool to probe flame structures and

investigate the coupled effects of complex transport phenomena with chemical kinetics.

As part of an ongoing effort to expand combustion modeling capabilities, we investigate

computationally the performance of several multigrid techniques (see [5], [6], [7], and [8]) combined

with the numerical solution of combustion related problems. In the present work, we consider a

flame sheet problem rather than a finite rate chemistry model for an axisymmetric laminar diffusion

flame in order to alleviate the memory and CPU requirements on the computer simulations. The

numerical techniques presented in this paper, however, also apply to combustion problems with

finite rate chemistry [9]. We note that a flame sheet model adds only one field to the hydrodynamic

fields that describe the underlying flow. A detailed kinetics model adds as many fields as species

considered in the kinetic mechanism, each with its own coupled conservation equation. Since the

CPU time and the memory requirements scale with the square of the number of dependent

unknowns, the flame sheet model considerably reduces the cost of the computer simulations while

still keeping the coupling and nonlinearity features associated with the original problem.

In the flame sheet model, the chemical reactions are described with a single one step irreversible

reaction corresponding to infinitely fast conversion of reactants into stable products. This reaction

is assumed to be limited to a very thin exothermic reaction zone located at the locus of

stoichiometric mixing of fuel and oxidizer, where temperature and products of combustion are

maximizedl To further simplify the governing equations, one neglects thermal diffusion effects,

assumes constant heat capacities and Fick's law for the ordinary mass diffusion velocities, and takes

all the Lewis numbers equal to unity [2]. With these approximations, the energy equation and the

major species equations take on the same mathematical form and by introducing Schvab-Zeldovich

variables, one can derive a source free convective-diffusive equation for a single conserved scalar.

Although no information can be recovered about minor or intermediate species in the flame sheet

limit, the temperature and the stable major species profiles in the system can be obtained from the

solution of the conserved scalar equation coupled to the flow field equations. Further, the location

of the physical spatially distributed reaction zone and its temperature distribution can be

adequately predicted by the flame sheet model for many important fuel-oxidizer combinations and

configurations. Since being studied as a means of obtaining an approximate solution to use as an
initial iterate for a one dimensional detailed kinetics computation in [10], flame sheets have been

routinely employed to initialize multidimensional diffusion flames.

In §2, a comparison of three possible formulations of the problem is presented, including the

governing equations and boundary conditions. In §3, the general solution algorithms are presented,

including a damped Newton method, Jacobian evaluation, linear solvers (Bi-CGSTAB or CMRES),

and the pseudo transient process. In §4, various multigrid methods are discussed in the context of

flame sheets. In §5, numerical experiments are presented. Finally, in §6, some conclusions are

reached.
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2. VORTICITY-VELOCITY FORMULATION

In diffusion flamesthe combustionprocessis primarily controlledby the rate at which the fuel
and oxidizer arebrought together in stoichiometricproportions. Thus, independently of the
submodelusedfor the chemicalkinetics (finite rate vs. flamesheet), the overall accuracy of the

numerical solution strongly depends on an accu_rate representation of the flow field. Hence, a brief

discussion on the various formulations of the Navier-Stokes equations in the context of laminar

combustion problems is of order.

The first numerical solution of two dimensional axisymmetric laminar diffusion flames was

obtained using the streamfunction-vorticity formulation [2]. This approach is attractive for three

reasons:

1. It eliminates the coupling associated with the presence of the pressure in the momentum

equations.

2. It reduces the number of equations to be solved by one.

3. It also has the important advantage that continuity is explicitly satisfied locally.

However, the specification of boundary conditions meets with difficulties when one attempts to

specify vorticity boundary values. In particular, a zero vorticity boundary condition at the inlet of

the computational domain results in a rough approximation of the true solution, thus severely

altering the resulting velocity field [3]. On the other hand, the specification of vorticity boundary
values in terms of the streamfunction requires the discretization of second order derivatives, thus

yielding off diagonal terms in the Jacobian matrix which result in having to solve severely ill

conditioned linear systems. Another important difficulty associated with the

streamfunction-vorticity approach is that the extension to three dimensional configurations throu, gh

the introduction of a vector potential instead of the scalar streamfunction is cumbersome and

computationally expensive since it introduces additional dependent variables.

Alternatively, a primitive form of the Navier-Stokes equations has been recently implemented for

several axisymmetric laminar diffusion flames (see [3] and [4]). In this approach, the velocity field is

computed using the momentum equations and the pressure field is recovered from the continuity

equation. As a result of the difference in nature of the governing equations, the discrete pressure

field has to be determined in a manner consistent with the discrete continuity equation. This can

be achieved to machine zero on a staggered grid. However, staggered mesh schemes do also have

drawbacks in complex geometries configurations where non-orthogonal curvilinear coordinates are

used and when using sophisticated numerical techniques such as multigrid methods (see [11] and

[12]). Although feasible ([13] and [14]), the development of staggered grid based multigrid solvers is

computationally cumbersome since the transfer operators between levels do not coincide for each

dependent variable in order to preserve a staggered grid arrangement on all levels. This difficulty

may even be further exacerbated in three dimensional configurations. Finally, it is worthwhile to
note that two and three dimensional solutions of incompressible viscous flows on a nonstaggered

grid have been reported (see [11] and [12]). However, the extension of such procedures to highly

compressible systems where the density can vary by several orders of magnitude inside the

computational domain may still yield some complications.
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The vorticity-velocity formulation constitutesa third approachto the numericalsolution of the
Navier-Stokesequations.A review of incompressiblefluid flow computationsusing this formulation
is well documentedin [15]. The vorticity-velocity formulation of the Navier-Stokesequationshas
beenrecently extendedto two and three dimensionalcompressibleflowsand implementedfor the
numerical solution of flamesheetproblems(see[16]and [17]). As motivated in these references,a
vorticity-veiocityformuiation alIows_eplacement_:o_(h_first:order=cont[nu_tyequati0n with
additional secondOrder equations: _ereas the stre_nction'vorticity formulation also

accomplishes the same replacement in two dimensions, vorticity-velocity is extensibIe to three and

allows more accurate formulation of boundary conditions in a numerically compact way.

Furthermore, off diagonal convective terms in off diagonal blocks that exert a strong influence in a

streamfunction-vorticity formulation disappear. Another important attractive feature of the

vortlcity2velocity formulation is that the governing equat-ionscan be discretized on a nonstaggered

grid, thus allowing the implementation Of a muitigrid algorithm at a relatively low overhead in

additional programming (see [16], [17], and [18]).

The flame sheet governing equations consist of the conservation of total mass, momentum and a

conserved scalar equation. The conservation of total mass and momentum equations constitute the

flow field problem and are formulated ti§hig--tIie_vorticity:veIiJc_-ty f6rmuiatidn of the compressible

axisymmetric NavierLStokes equations. A source free convectlve-diffusive equation for a conserved

scalar is solved coupled together with the flow field equations and the temperature and major

stable species profiles in the system can be recovered from the conserved scalar (see [2], [19], and

references therein). We introduce the velocity vector v = (v_, v,) with radial and axial components

v_ and v,, respectively, and the normal component of the vorticity
d

Or,.
Oz Or" (1)

The vorticity transport equation is formed by taking the curl of the momentum equations, which

eliminates the partial derivatives of the pressure field. A Laplace equation is obtained for each

velocity component by taking the gradient of (1) and using the continuity equation. This yields the

governing equations in the foii0_ng form:

_ + _Or _ Oz _ 0--_ r Or ,- Or

o-_ + - __Oz 2 Or r Oz Oz _] '

= - Vp. + (2)

2 (V(div(v)). V#- VVr "V00@ -- VV, "V-_z) '

1 0 OS O OS OS OS
o_ (rpD$7 ) + _ (PD-_z ) = pvr$-; + Pv _-07 ,

where p is the density, # the viscosity, g the gravity vector, div(v) the cylindrical divergence of the

velocity vector, S the conserved scalar, D a diffusion coefficient, and the components of V/_ are

(o,,-o°-_) • The density is computed using the perfect gas law and, in the low Mach numbers

approximation valid for these flame configurations, one can use the outlet (constant) pressure.

146



Table 1: Boundary conditions

Axis of symmetry (r = 0)

Outer zone r -- Rmax)

Inlet (z = 0

Exit (z = L) vr = 0

Vr _0

t_r --

Vr =0

_-r =0 w=0
0

vz=v°(r)
-0 o___-0

Dz -- Dz --

___s= 0
Dr

S=O

S = S°(r)
o_ss=0
T)z

Consequently, in the above formulation, the pressure field is eliminated from the governing

equations as a dependent unknown and can be recovered, once a computed numerical solution of

(2) is obtained, by solving a Laplace type equation derived by taking the divergence of the

momentum equations [15].

Recalling that all of the Lewis numbers are taken equal to unity, the quantity pD is given by the

viscosity coefficient # divided by a reference Prandtl number and we use an approximate value for

air, Pr = 0.75. Hence, in this model, the determination of all the transport coefficients is reduced

to the specification of a transport relation for the viscosity and we use the same power law as the

one given in [2]. We also note that, due to the high temperature gradients present in the system,

the viscosity derivatives in the right hand side of the vorticity transport equation (2) can not be

neglected. Our numerical experiments show that such an approximation leads to significant

differences in the numerical solution, especially for the radial velocity profile. Finally, a conservative

form of the convective terms can also be considered but it yields slower convergence rates without

any significant changes in the computed solution.

A schematic of the physical configuration is given in Figure 1. It consists of an inner cylindrical

fuel jet (radius Rr =0.2cm), an outer co-flowing annular oxidizer jet (radius Ro =2.5cm) and a

dead zone extending to Rmaz =7.5cm. The inlet velocity profile of the fuel and oxidizer are a plug

flow of 35cm/s. This yields a typical value for the Reynolds number of 550. Further, the flame

length is approximately L I --3cm [19] and the length of the computational domain is set to

L =30cm. Although the fuel and oxidizer reservoirs are at room temperature (300 °Kelvin), we need

to assume, in the flame sheet model, that the temperature already reaches the peak temperature

value along the inlet boundary at r = Rt. This peak temperature is estimated for a methane-air

configuration to be 2050°K. Hence, the inlet profile of the conserved scalar, S°(r), is specified in

such a way that the resulting temperature distribution blends the room temperature reservoirs and

the peak temperature by means of a narrow Gaussian centered at R_. The narrowness of the

Gaussian profile has a relevant influence on the calculated flame length, so that its parameters have

to be determined appropriately [19]. The boundary conditions are summarized in Table 1. Finally,

we note that the use of the definition of the vorticity (1) for the vorticity outlet boundary condition

does not yield any relevant changes in the computed solution.

3. GENERAL SOLUTION ALGORITHM

The partial differential equations (2) together with the boundary conditions (see Table 1) are

discretized on a two dimensional tensor product grid. A solution is first obtained on an initial

coarse grid. Additional mesh points are then adaptively inserted in regions of high physical activity

by equidistributing weight functions of the local gradient and curvature of the numerical solution
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Figure 1: Physical configuration (not in scale)

[2], which yields a 129 × 161 grid. To verify the grid independence of the solution, we refined this

grid to 257 × 219 points. The relative error between the two solutions was found to be lower than

2% and differences were only encountered in the outflow region where the grids were still kept

somewhat coarse. However, the flame length and the temperature distribution inside the flame were

accurately predicted on the 129 × 161 grid. Hence, this grid will be considered as the finest grid in

the present work.

The spatial operators in the partial differential equations (2) are approximated with finite

difference expressions. Diffusion and source terms are evaluated using centered differences. We

adopt a monotonicity preserving upwind scheme for the convective terms (see [20, p. 304]), for

instance,

,0" S +l - (3)
0S max{(Vr),_½,0} Si -- S,-1 max{-(vr)i+_ }r,+l r,

Vr-_ _ Ti _ Ti-1 '

The boundary conditions given in Table i involve only zero or first order derivatives. For the latter

terms, first order back or forward differences can be used, except for two boundary conditions which

require a more accurate treatment. First, as motivated in [17], the vorticity inlet boundary

condition is discretized using the vorticity values at the first two lines of the computational domain.
_ as follows:

More specifically, at an inlet point (i, 1), we discretize the equation w = oz - or

1

+ =
Z 2 -- Z 1Z

(Vz)i+l -- (Vz)i-1

ri+l -- ri-1

It is also of critical importance for the accuracy of the numerical solution that the axial velocity

boundary condition on the axis of symmetry be evaluated using a second order scheme. At any

(4)
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point (1, j), we have

(Vz)2- (Vz)l = (r2--2 rl)2 02vzOr2 + 0 ((r2 -- rl) 2) •

The right hand side is evaluated using the Laplace equation for vz in (2). On the axis of symmetry,

this reduces to

Ors Oz_ Or Oz \ p Oz} "

The radial derivative of the vorticity can be discretized with a first order difference while still

yielding an overall second order accuracy for vz. By comparing our numerical solutions with a

primitive variable solution of the same problem [19], we found that these two boundary conditions

exerted a strong influence on the overall accuracy of the numerical solution.

The discretization of the partial differential equations (2) together with the boundary conditions

(Table 1) yields a set of algebraic equations of the form F(U) = O, which is solved using a damped

Newton method

J(Un)AU '_ = -)_nF(U'_), n = 0,1,..., (5)

with convergence tolerance HAUnHs < 10 -5. The Jacobian matrix J(U '_) is computed numerically

using vector function evaluations and the grid nodes are split into nine independent groups which

are perturbed simultaneously (see [2] for more details). Selected cases were rerun with a more

stringent convergence tolerance of 10 -8 , without any significant changes in the numerical solution.

Rather than working with dimensionless variables, we introduce a scale factor al, I E [1, no], for

each dependent variable (no - 4 for the flame sheet problem). The norm of the discrete vector AU '_

is then given by

= i,j))'.II 'v°ll (6)
It is worthwhile to point out that an appropriate choice of the scale factors can yield significant

savings in the execution time. This point will be further illustrated with numerical experiments in

§5.1.
The linear system (5) is inverted at each Newton step through an inner iteration. This inner

iteration may consist of either the Bi-CGSTAB algorithm [21] or a restarted version of GMRES [22]

combined with a Gauss-Seidel (GS) left preconditioner. This choice is motivated in [16] through

various numerical simulations of flame sheet proble_ms. Although a single Bi-CGSTAB/GS iteration

requires approximately 1.5 times more time than an average GMRES/GS iteration, both algorithms

yield total execution times which are in general within a few percent of each other. The former has

lower memory requirements (see the end of §5.2 for more details). The convergence of the inner

iteration is based on the norm of the left preconditioned linear residual using an absolute tolerance

equal to one-tenth of the Newton tolerance. Suc_ ter_minat!op: cr iterion brings enough information

on the update vector AU" back to the Newton iteration (see [16] for more details).

Due to the nonlinearity of the original problem, a pseudo transient process is used to produce a

parabolic in time problem and bring the starting estimate into the convergence domain of the

steady Newton method. The original nonlinear elliptic problem is cast into a parabolic form by

ou to the original set of algebraic equations F(U) = 0, and aappending a pseudo transient term -_

fully implicit scheme solves (again with Newton method)

U "+1 - U"

_(U "+_) = F(U n+_) + At,_+_ - O, (7)
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where Af _+1 is the (n + 1) st time step. The number of time steps needed to bring the initial

guessed solution into the convergence domain of the steady Newton iteration depends on the size of

the grid, and the coarser the grid, the fewer relaxation steps are necessary. This point will be

further discussed in §5.2.

4. MULTIGRID TECHNIQUES

: ........ : : 7

The multigrid p_phy applied to our modei problem is derived from [511 [7]=i and [81. We

assume that there is a sequence of spaces .Mi, i = 1, ..., k, where the .Mi approximate .Adl. We

further suppose there exist restriction and prolongatioT_ mappings

_i" A4i--*A4i+l, l<i<k-1,Pi: Adi--}.Adi-1, 2<i<k.

between neighboring spaces. We also assume there is a sequence of problems (5) represented by Ji.

A multilevel correction algorithm, where the finest level is level 1 and the coarsest level is level k,

is simply defined by ...... _ .....

Algorithm MGC ( lev, {Jj,xj, bj}k:l, {'PJIj:2,k {T_j}j=lk-1 )

1. xt_ _" Solver_¢_(Jt_,, xt_, b_,)

2. If iev< k, then repeat 2a-2d until some condition is met:

2a. xte_+l _-- 0, b,_,+l _-- T_le;(biev -- JlevXlev)

2b. MGC ( lev + 1, {Jj,xj, k k k-1bAj: , {zeAj: )
2c. xl_ +--xt_ + P_+lxl_÷_

2d. xl,, _-- Solverl¢,_(Jl_,_, xte,_, bl_,_)

In our case, the solver on every level is either Bi-CGSTAB/GS or GMRES/GS. In Step 1 on level k,

our stopping criterion was that the linear residual was adequately reduced (see §3): On the other

levels, the stopping criteria was either an upper limit on the number of iterations or that the linear

residual was adequately reduced.

A common condition in step 2 is to do steps 2a-2d some specified number of times (e.g., 0 for

one way multigrid, 1 for a V Cycle, or 2 for a W Cycle). In §5.2, a V Cycle took less overall time

than any other choice for a condition in step 2. However, many V Cycles were necessary, starting

from the finest level (see the definition of Algorithm NIC below).

Brandt's FAS algorithm [6] is a nonlinear varlet 0_ Algorithm MGC: A:n;n_ear smoother is

used in steps 1 and 2d, the actual solution is computed on every level, and corrections are

computed before interpolation in step 2c (see [23] for more details).

We use a nested iteration multilevel algorithm since we do not have an adequate initial guess to

the solution initially.

Algorithm NIC ( lev, k{jj,xj, bj}j=l, k k-1{PjIj=2, {nJIj=l )

1. MGC (k, {Jj, k k k-1xj, bj I j=l, {_'_j)j=l{PJL: , )
2. Do steps 2a-2b with lev = k- 1,..., 1:

2a. xtev e-- "Plev+lXlev+l
k k k-1

2b. MGC ( lev, {Ji x_,b_}j=l,, {nJb= )
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A damped N_u,tol_ m ultile t,el algorithm is defined by introducing an additional step before each

reference to Algorithm MGC in just Algorithm NIC. Before each reference to Algorithm MGC, a

Jacobian is formed and a damped Newton step is performed. The last Jaeobian on a level is saved

for use in multilevel correction steps. A o_,r _,ay m,dlileve:l algorithm means that Algorithm MGC

never performs any portion of its step 2 as part of its use by Algorithm NIC. We always use a

damped Newton iteration, but we drop the term damped Newton when referring to one way

multilevel methods.

The difference between FAS and damped Newton multilevel methods is easy to categorize. FAS

uses a nonlinear iterative method (e.g., nonlinear Gauss-Seidel) while damped Newton uses

standard linear solvers. When evaluating the nonlinear function is inexpensive, FAS usually

produces an approximate solution faster than the damped Newton multilevel method. However,

when the function evaluations are expensive, the damped Newton multilevel method usually

produces an approximate solution faster than FAS. In a typical diffusion flame problem with finite

rate chemistry [9], the function evaluations are horrendously expensive, so we did not explore FAS.

For a flame sheet problem solved using FAS, see [24].

5. NUMERICAL RESULTS

In this section, we present several numerical results obtained on an IBM RISC System/6000

(model 560). In §5.1, we focus on unigrid calculations and emphasize the importance of the scale

factors eel in (6) in order to appropriately monitor the convergence of the outer damped Newton

iteration. Our numerical experiments show that the overall execution times can be decreased by up

to an order of magnitude by taking a large scale factor for all of the vorticity corrections in the

computational domain. The execution times can be decreased by an additional factor of six and ten-

by combining the unigrid numerical procedure with damped Newton multilevel iterations, using

either one way or correction schemes, respectively. The corresponding numerical results are

presented in §5.2.

5.1. Unigrid tests

In this section, we discuss the influence of the scale factors at in (6) on the whole convergence

history of the numerical solution. By modifying these scale factors, we shift the balance of work

required in the outer Newton iteration and in the inner linear iterations between the different

degrees of freedom present in the system. In particular, a large scale factor for the vorticity

component asks for less accuracy in the computed vorticity corrections that are brought back to the

Newton iteration, thus reducing considerably the amount of work at each Newton step. As

indicated in our numerical experiments, this does not yield any loss of accuracy for the other

components of the numerical solution (the radial and axial velocity and the conserved scalar).

Another important consequence is that much larger time steps can be taken, even at the beginning

of the pseudo transient process when the solution is approximated with a very "coarse" initial

guess. Furthermore, only a few time steps are required (typically 20) before the numerical solution

already lies in the convergence domain of the steady Newton iteration (5). With lower scale factors

for the vorticity, most of the CPU time is spent during the pseudo transient iterations, since much
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smaller time steps need to be taken and the convergence domain of the iteration scheme (5)

becomes much narrower. Our numerical experiments indicate that a scale factor for the vorticity of

103 can yield savings in CPU time of up to an order of magnitude without altering the velocity and

temperature profiles of the numerical solution.

5.2. Multigrid acceleration

In this section, w e present further !mprovements in the total execution times obtained by
combining the numerical procedure described in §3 and §5.1 With damped Newton multilevel i

iterations, using either one way or correction schemes. In all of the results, the speedups represent

ratios of CPU times. :_ = :

We consider the finest level to be a 129 x 161 grid and we construct three additional coarser

grids by successively discarding every other node from one grid to the coarser one. This yields a

coarsest grid of 17 x 21 points. It is worthwhile to note that the use of even coarser grids in these

problems meets with difficulties since the calculated flame speeds become excessively large due to

the influence of numerical diffusion and/or conduction (see [25]) and the Newton iteration (5) fails

to conv er_ge. = .......
In the one way nonlinear multigrid approach, we solve the nonlinear problem F(U) = 0 in one

cycle, starting at the coarsest level and ending at the finest. Asymptotically, as the mesh spacing

approaches zero, the interpo]ant of the computed solution on one grid lies in:the convergence

domain of Newt0n method-on t-he next finer grid [26]: In our numerical calculations, thi _ was found

to be the case for all levels considered, when using either cubic or linear interpolation between : : _
levels_As a Consequence_ the pseudo transient-process needs only to be performed on the c0arsest : !

level, in order to bring the initial guess into the convergence domain of the steady Newton iteration

on this level. This procedure is particularly attractive for two reasons:

1. By time stepping on the coarsest level, we reduce considerably the amount of work spent in

the pseudo transient phase.

2. On coarser grids, less computer time is needed to solve (5).

The first set of numerical experiments was performed using Bi-CGSTAB/GS as the linear

smoother. The numerical results obtained during the pseudo transient phase are presented in

Table 2. On Our workstati0n, the time stepping requlr_:lb:seconds On the coarsest level _as_opposed

to over 40 minutes on the finest, thus yielding a speedup of 166. Table 3 breaks down the numerical

results for the steady state Newton iterations. Note that the CPU time spent during the pseudo *

transient process has been included in the computation of the speedups presented in Table 3. A

speedup of a factor of four is achieved using the one way nonlinear multigrid on two levels, which is

due to the significant decrease of Smoothing steps done on the finest !eve!. With three and four

levels,we obtained speedupsofb_4 and 5_8, respectively. The four level multigrid _mproves only :-_

marginally the execution times, since it decreases the CPU time spent on the third level, while most --

of the work is already concentrated in the smoothing iterations on the finest level. Finally, it is

interesting to note that linear interpolation between levels yields lower execution times than cubic

interpolation when Bi-CGSTAB/GS is used as the linear smoother.

We also implemented the one way nonlinear multigrid algorithm using GMRES/GS as the linear

smoother with 25 Krylov vectors. This requires 15 Mb of additional storage for the Krylov space.
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Table 2: Numerical results for oneway nonlinearmultigrid during the pseudotransient phasewith
Bi-CGSTAB/GS asthe linear smoother

Operation Levels
1 2 3 4

BiCGSTAB/GS iterations 634 352 217 160

Speedup in time 1.0 6.6 34.6 166.0

Table 3: Numerical results for one way nonlinear multigrid

Operation

smooth(1

smooth(2

smooth(3

smooth(4)

Speedup in time

Levels

1 2 3 4

1632 371 384 378

- 723 390 380

- - 326 346

- - - 192

1.0 4.2 5.4 5.8

Smooth(i) represents the total number of Bi-CGSTAB/GS steps done on level i during the steady
state Newton iterations.

We found in our numerical experiments that the use of cubic interpolation between levels yielded

lower execution times than linear interpolation and that it was more efficient to adaptively increase

the time step slightly faster during the pseudo transient phase with respect to the Bi-CGSTAB/GS

calculations. The numerical results are given in Tables 4 and 5. We obtain a speedup of 160 for the

pseudo transient phase on four levels. As indicated in Table 5, the total execution times delivered

are greater than the ones obtained with Bi-CGSTAB/GS. This latter algorithm seems therefore to

be a preferable linear smoother when using one way nonlinear multigrid. Note also that the unigrid

calculation fails to converge since GMRES/GS stagnates.

In order to solve the linear systems more efficiently, especially the one on the finest level, we

perform damped Newton multilevel iterations, making use of the Jacobians computed on all levels

coarser than the current one (see algorithm MGC in §4 for more details). The numerical results

Table 4: Numerical results for one way nonlinear multigrid during the pseudo transient phase with

GMRES/GS as the linear smoother

Operation

GMRES/GS iterations

Speedup in time

Levels

2 3 4

572 367 258

7.2 34.6 159.6
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Table 5: Numerical results for one way nonlinear multigrid

Operation

smooth(l)

smooth(2)

smooth(3)

smooth(4)

Speedup in time

2

530

1559

3.2

Levels

3 4

945 945

592 590

481 825

- 161

4.2 4.2

Smooth(i) represents the total number of GMRES/GS steps done on level i during the steady state

Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

Table 6: Numerical results for damped Newton multilevel iterations

Operation

smooth(l)

smooth(2)

smooth(3

smooth(4)

Speedup in time

Levels

1 2 3 4

1632 238 268 243

- 1096 645 673

- - 861 1243

- - - 799

1.0 4.8 6.2 6.6

Smooth(i) represents the total number of Bi-CGSTAB/GS steps done on level i during the steady

state Newton iterations.

presented in Table 6 are obtained using 30 steps of Bi-CGSTAB/GS as the linear smoother, which

may seem at first glance to be an excessive number of iterations. We obtain a speedup of 6.6 when

using four levels. A comparison of Tables 3 and 6 shows that the balance of smoothing iterations is

shifted towards the coarsest levels when using damped Newton multilevel iterations, thus yielding

lower execution times (approximately 12%) th_ the ones obtained with the one way n0fiIinear

multigrid. However, it is worthwhile to point out that this improvement comes at the expense of

storage since the one way nonlinear multigrid requires 39 Mb and the damped Newton multilevel

iterations require up to 62 Mb. This difference is due mainly to the fact that damped Newton

multilevel correction methods require saving a Jacobian on every level instead of just one,

Finally, we also performed damped Newton multilevel iterations using GMRES/GS as the linear

smoother. In our numerical experiments, we found that the choice of 25 Krylov vectors delivered

lower execution times than 20 or 30. We also used cubic and:linear interpolation in algorithm NIC

and MGC, respectively (see §4). The numerical results are presented in Table 7. We obtain a

speedup of a factor of 10.5 when using four levels, thus significantly improving the maximum

speedup obtained with Bi-CGSTAB/GS. Using damped Newton multilevel iterations and

GMRES/GS as the linear smoother, the whole numerical solution for the flame sheet problem on a

129 x 161 grid is obtained in about 9 minutes on our workstation. On a supercomputer, the CPU
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Table 7: Numerical resultsfor dampedNewton multilevel iterations

Operation

smooth(l)
smooth(2)
smooth(3)
smooth(4)
Speedupin time

Levels
2 3 4
218 216 219

2272 565 585
- 1179 1159
- - 1020

5.1 9.9 10.5

Smooth(i) representsthe total numberof GMRES/GS stepsdoneon level i during the steady state

Newton iterations. The speedups are with respect to the unigrid solution time in Table 3.

times will drop dramatically.

6. CONCLUSIONS

In this paper, we presented a new numerical procedure to solve flame sheet problems. The

governing equations use the vorticity-velocity formulation of the Navier-Stokes equations coupled

together with a conserved scalar equation. By appropriately monitoring the norm of the correction

vector in the damped Newton iteration, significant savings in the overall execution time can be

obtained. These performances can be furfiier-frnproved by combining the above numerical

procedure with one way nonlinear multigrid and damped Newton multilevel iterations. The latter

approach yields lower execution times than the former but at a higher cost in storage. With four

levels of grids, a speedup of 5.8 is obtained with a one way nonlinear multigrid and

Bi-CGSTAB/GS as the linear smoother. Similarly, damped Newton multilevel iterations and

GMRES/GS as the linear smoother obtain a speedup of more than a factor of 10. For three

dimensional problems, we should obtain speedups much greater than 10.
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